Microbiome 101

An Introduction to Microbiome Studies and Bioinformatics Tools

MEDINI ANNAVAJHALA, PHD

UHLEMANN LABORATORY, DEPT. OF MED. MICROBIOME CORE LABORATORY

CUMC, DIVISION OF INFECTIOUS DISEASES

MICROBIOME WORKING GROUP SEMINAR SERIES, FALL 2017

What is your experience level with microbiome research?

Answered: 19 Skipped: 0

ANSWER CHOICES				
 I'm generally interested and want to learn more about microbiome research 		36.84%	7	
 I intend to get involved in microbiome research in the future but have no experience yet 		5.26%	1	
 I have been involved in some microbiome research projects but want to learn more about techniques/analysis 		42.11%	8	
 I have been involved in multiple microbiome research projects and have basic understanding of microbiome data analysis 		42.11%	8	
 I consider myself an expert on some aspect of the microbiome 		10.53%	2	
Total Respondents: 19				

What types of seminars are you most interested in attending?

Answered: 19 Skipped: 0

ANSWER CHOICES	•	RESPONSES	*	
 Technical - Introductory 		47.37%	9	
 Technical - Novel Techniques/Analyses 		84.21%	16	
✓ Clinical Research		73.68%	14	
 Non-Academic/Applied 		26.32%	5	
Total Respondents: 19				

Comments (1)

Overview

Microbiome – components, host interactions, and dysbiosis

NGS and Bioinformatics Tools

Microbiome Study Design

Terminology

☆ Microbiota metabolites
 ♦ Host metabolites
 ● Microbiota protein
 ● Host protein

Microbiome Genes, genomes, products, host proteins

MicrobiotaMetagenome16S rRNAGenes and genomesTaxonomic identificationof microbiota

Whiteside, S. A., et al. (2015). "The microbiome of the urinary tract– a role beyond infection." Nat Rev Urol **12**(2): 81-90.

NIH Human Microbiome Project

Phase I (2008 - 2012)

- cataloging microbes in / on human body
- 242 healthy American adults (18 44 years old)
- ~ 10,000 bacterial species

Phase II (2013 – 2015)

- Biological properties of both microbiome and host
- microbial composition, gene expression, proteins and metabolities
- longitudinal cohort studies

Microbial genomes may code for **100x as many genes** as human genome

~2,000,000 bacterial genes ~23,000 human genes

Many bacterial species previously not recognized because unculturable with current methods

Healthy adults: Unique microbial community composition in each body part

Relative abundance of taxa at the phylum level by anatomical site

- Substantial within individual variation across anatomical site
- Presence of pathogens associated with ecology
- Variations between individuals

Cho, I. and M. J. Blaser (2012). "The human microbiome: at the interface of health and disease." <u>Nat</u> <u>Rev Genet **13**(4): 260-270.</u>

Microbiome – innate immune system interactions

Diseases: Inflammatory Metabolic Neoplastic

Microbial imbalance

Changes in quantity and quality

Causes:

- antibiotics
- lifestyle, stress
- age
- genetic predisposition

Consequences:

- immune stimulation

Fungal Dysbiosis

Iliev, I. D. and I. Leonardi (2017). "Fungal dysbiosis: immunity and interactions at mucosal barriers." Nat Rev Immuno

Nature Reviews | Immunology

What do we want to ask?

Disease/Outcomes

- Presence/Absence
- Differential abundance
- Diversity
- Functional capabilities
- Activity

Overview

Microbiome – components, host interactions, and dysbiosis

NGS and Bioinformatics Tools

Microbiome Study Design

A lot of data describing many organisms in multiple samples

16s rRNA Sequencing

16S rRNA gene present in all bacterial species

Highly conserved and variable sequences

Variable = "molecular fingerprint"

Amplification with degenerate primers targeting conserved regions

Large public database for comparisons

18S rRNA/ITS Sequencing

18S rRNA eukaryotic gene homologous to 16S rRNA in bacteria

For fungi, variability in 18S rRNA may not be sufficient to classify species

ITS = Intergenic Transcribed Spacer \rightarrow 2 ITS regions in each eukaryotic cistron

• Higher resolution for fungi, but longer reads generated

Taylor, D. L., et al. (2016). "Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing." <u>Applied and Environmental Microbiology</u> **82**(24): 7217-7226.

"Shotgun" Metagenomics

What genes are present (from which organisms– maybe) → Functional potential of the system

Traditional Sanger Sequencing

<u>https://www.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-electrophoresis/a/dna-sequencing</u> <u>https://unlockinglifescode.org/timeline/11</u>

Illumina MiSeq - SBS

SBS = Sequencing By Synthesis

Multiplexing samples into one run using indexes

Multiple reads per base pair

Adapter Ligation

Cluster Generation on Flow Cell

Sequencing

Sequencing Output

AAACTGGAAAAAATGATCGGCGATCTGCTGTAATCATTCTTAGCGTGACCGGGAAGTCGGTCACGCTACCTCT TCTGAAGCCTGTCTGTCACTCCCTTCGCAGTGTATCATTCTGTTTAACGAGACTGTTTAAACGGAAAAATCTT GATGAATACTTTACGTATTGGCTTAGTTTCCATCTCTGATCGCGCATCCAGCGGCGTTTATCAGGATAAAGGC ATCCCTGCGCTGGAAGAATGGCTGACATCGGCGCTAACCACGCCGTTTGAACTGGAAACCCGCTTAATCCCCG ATGAGCAGGCGATCATCGAGCAAACGTTGTGTGAGCTGGTGGATGAAATGAGTTGCCATCTGGTGCTCACCAC GGGCGGAACTGGCCCGGCGCGTCGTGACGTAACGCCCGATGCGACGCTGGCAGTAGCGGACCGCGAGATGCCT GGCTTTGGTGAACAGATGCGCCAGATCAGCCTGCATTTTGTACCAACTGCGATCCTTTCGCGTCAGGTGGGCG TGATTCGCAAACAGGCGCTGATCCTTAACTTACCCGGTCAGCCGAAGTCGATTAAAGAGACGCTGGAAGGCGT GAAGGACGCTGCGGGTAACGTTGTGGTGCATGGTATTTTTGCCAGCGTACCGTACTGCATTCAGTTGCTGGAA GGGCCATACATTGAAACGGCACCGGAAGTGGTTGCAGCATTCAGACCGAAGAGTGCAAGACGCGACGTTAGCG AATAAAAAAATCCCCCCGAGCGGGGGGGGGTCTCAAAACAATTAGTGGGATTCACCAATCGGCAGAACGGTGCGA CGGCAAAGTGGATGATTGCGGCGTTACCGGCAATGTTACCGATCGCCAGCAGGGCAAACAGCACGGTCAGGCT AAAGAAAACGAATTGCAGAACGCGTGCGCCTTTCAGCGTGCCGAAGAACATAAACAGCGTAAATACGCCCCAC AGACCCAGGTAGACACCAAGGAACTGTGCATTTGGCGCATCGGTCAGACCCAGTTTCGGCATCAGCAGAATCG CAACCAGCGTCAGCCAGAAAGAACCGTAAGAGGTGAATGCGGTTAAACCGAAAGTGTTGCCTTTTTTGTACTC CAGCAGACCAGCAAAAATTTGCGCGATGCCGCCGTAGAAAATGCCCATGGCAAGAATAATACCGTCCAGAGCA AAATAACCCACGTTGTGCAGGTTAAGCAGAATGGTGGTCATGCCGAAGCCCATCAGGCCCAGCGGTGCCGGAT ACTGTAGTGTTTTCAGGGCGCGGCATAATAATCAGCCAGTGGGGCAGTGTCTACGATCTTTTGAGGGGGAAAAT ACGGCTGGAATTGTCACGCGATAGGCAATGCCGCTGACCGCTTTAACCCCCATTTAGTGCCGCGCCTACAGGGC CTCCCAGACCCGCGCGCGCGCAGCAAACCATGCCCAAGTACGCTCATTGCTGCGTGGGTGCGTAAAATGCGGGT CAATTGGCTGGAAAGCAAATGCGACACGCCTTTTGCCAATAATTTGTCTTTCATCAGCAGCGGCAGCAGCTCT TCCAGCTCATTCACCCTGGCATCGACCGCGTGCAGAAACTCCTGCTTATGTTCCTCGTCCATTTTCTTCCAGG TGTTACGCAGAAATTGTTCCAGTAACTGTTGCTCAATCTCAAACGTAGACATCTCTTTGTCGGCTTTCAGCTT CAATCGCTTTGAAACATCGAGCAAAATGGCCCGATACAATTTACCGTGTCCACGCAGTTTGTTGGCGATACTA TCGCCACCAAAATGCTGTAATTCTCCGGCAATCAGCTGCCAGTTGCGGCGATGTTGCTCGGGATGTCCCTCCA TCGATTTAAACAGTTCGTTGCGCATCAGTACGCTGGAGAGGCGAGTTTTGCCTTTTTCATTATGGGTGAGCAA TCGGGCGAAATTTGCCCAATTGTTCCTCACTACAATGCTGGAGAAAATCCAGATCTGAATCATTCAGGTAATTA ACATTCATTTTTTGTGGCTTCTATATTCTGGCGTTAGTCGTCGCCGATAATTTTCAGCGTGGCCATATCCGAT

Quality Control

- Pair-ended read generation reduces sequence error rates
- But, low quality reads can still be present
- Quality (Phred Score, Q Score) = Function of confidence in base calling

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy	Q-score
10	1 in 10	90%	Q10
20	1 in 100	99%	Q20
30	1 in 1000	99.9%	Q30
40	1 in 10000	99.99%	Q40

Alignment – the key step

Sequencing projects are limited by the available reference databases

Domain

Kingdom

Phylum

Class

Order

Family

Genus

Species

- Sequences clustered by similarity into Operational Taxonomic Units (OTUs) (97%,99%)
- Representative sequence from each cluster is aligned to a reference database (e.g. Greengenes, Silva, UNITE)
- Challenges: multiple matches, no matches (new OTU)
- Some species may share >97% similarity, no resolution at species level
- Taxonomic databases (16S/18S/ITS studies) vs. Functional databases (NCBI RefSeq, nr/nt)

Overview

Microbiome – components, host interactions, and dysbiosis

NGS and Bioinformatics Tools

Microbiome Study Design

Microbiome Study Design

- What microorganisms are present (who is there)?
- What functionality does this community represent (what can they do)?
- Alpha-diversity
- Beta-diversity

Microbiome Study Design

Considerations:

- Outcomes vs. predictors
 - A variable may be both, but need to collect enough information on all potential predictors and outcomes
- Power calculation (1- β), effect size \rightarrow often **not really known**

 β = Type II Error (False Positives) $\downarrow \beta = \uparrow$ Power

 \uparrow Sample Size leads to \uparrow Power

Microbiome Study Design

Sample collection:

- Site of sampling
- Samples unlikely to be contaminated by other sites or after collection
 - \rightarrow ANY BACTERIA/FUNGI/ETC WILL BE AMPLIFIED
- Expected major bacterial/fungal organisms \rightarrow may affect DNA extraction needed
- How much DNA? Depends on the type of sample (is it a mix of human and bacterial DNA? Fungi? etc.)

Metadata, Metadata, Metadata!

	A	В	C	D	E	F	G
1	#SampleID 💌	BarcodeSequence 💌	LinkerPrimerSequence 💌	Forward FastqFile	ReverseFastqFile 🔻	TreatmentGroup	Days_Post_Tx 💌
2	30005			30005_1.fastq.gz	30005_2.fastq.gz	post	12
3	30017			30017_1.fastq.gz	30017_2.fastq.gz	post	33
4	30019			30019_1.fastq.gz	30019_2.fastq.gz	post	40
5	30029			30029_1.fastq.gz	30029_2.fastq.gz	post	55
6	30036			30036_1.fastq.gz	30036_2.fastq.gz	post	70
7	30107			30107_1.fastq.gz	30107_2.fastq.gz	post	161
8	30014			30014_S136_L001_R1_00	30014_S136_L001_R2	post	20
9	30008			30008_S139_L001_R1_00	30008_S139_L001_R2	post	8
10	30041			30041_S85_L001_R1_001	30041_S85_L001_R2_	post	66
11	30123			30123_S85_L001_R1_001	30123_S85_L001_R2_	post	178
12	30010			30010_S151_L001_R1_00	30010_S151_L001_R2	post	9
13	30012			30012_S49_L001_R1_001	30012_S49_L001_R2_	post	20
14	30016			30016_S163_L001_R1_00	30016_S163_L001_R2	post	6
15	30204			30204_S14_L001_R1_001	30204_S14_L001_R2_	post	211
16	30596			30596_S53_L001_R1_001	30596_S53_L001_R2_	post	385
17	30020			30020_S175_L001_R1_00	30020_S175_L001_R2	post	10
18	30035			30035_S21_L001_R1_001	30035_S21_L001_R2_	post	35
19	30215			30215_S50_L001_R1_001	30215_S50_L001_R2_	post	208
20	30544			30544_S88_L001_R1_001	30544_S88_L001_R2_	post	356
21	30026			30026_S80_L001_R1_001	30026_S80_L001_R2_	post	5
22	30168			30168_S2_L001_R1_001.	30168_S2_L001_R2_0	post	178
23	30117			30117_S73_L001_R1_001	30117_S73_L001_R2_	post	151
24	30606			30606_S132_L001_R1_00	30606_S132_L001_R2	pre	-32
25	30661			30661_S61_L001_R1_001	30661_S61_L001_R2_	post	4

Variables should be consistently collected, coded, and easy to interpret (BY A COMPUTER)

Taxonomic Distribution

Bar chart

Heat map

Alpha diversity

Diversity within a sample – based on OTU assignments

Richness – number of species present (Chao index)

Evenness – abundance of different species (Shannon index)

Rich and even

Beta diversity

Cross-sample relatedness

How different are types present?

Measure of genetic distance / dissimilarity between sample pair

UniFraq to determine beta-diversity - sequence alignment based

Principal Coordinate Analysis

Visualization of beta diversity matrix

Transform distance matrix into new set of orthogonal axes

2D or 3D

LEfSe – Effect sizes across sample groups

Bacteroidetes a: Alloscardovia rag2 b: Bifidobacterium Bacteroidia truc c: Metascardovia Actinobacteria d: Bifidobacteriaceae e: Bifidobacteriales f: Asaccharobacter a: Barnesiella h: Parabacteroides i: Porphyromonadaceae j: Bacteroidales k: Staphylococcus I: Staphylococcaceae m: Bacillales n: Streptococcus o: Streptococcaceae p: Clostridiaceae q: Coprococcus r: Roseburia s: Lachnospiraceae t: Oscillibacter u: Papillibacter Firmicutes v: Ruminococcaceae w: Clostridiales x: Lawsonia y: Escherichia_Shigella elpi,130D

Differential abundance of key taxa (biomarkers)

Segata, N., et al. (2011). "Metagenomic biomarker discovery and explanation." Genome Biol 12(6): R60.

PICRUST – Inferring Functional Potential from Taxonomy

What do we want to ask?

Disease/Outcomes

- Presence/Absence
- Differential abundance
- Diversity
- Functional capabilities
- Activity

Summary

Microbiota can influence host in a number of ways \rightarrow bacteria, fungi, viruses

16S rRNA sequencing remains the method of choice (cost, ease of use) for initial surveys of microbiome communities

ITS gaining ground as databases improve fungal-host connections are made

Metagenomics more informative but with logistical limitations

Taxonomic profiles, alpha-diversity, beta-diversity, differential abundance of taxa can all give different sides of the picture

Importance of honing study design and data collection prior to sequencing

Many opportunities for growth and collaborations: immunology, metabolomic studies, validation in animal models, mycobiome; analysis of existing datasets, epidemiology and biostatistics

Acknowledgements

Microbiome Core / Uhlemann Lab Group

Anne-Catrin Uhlemann

Stephania Stump

Marley Giddins

Sabrina Khan

Thomas McConville

Angela Gomez-Simmonds

Nenad Macesic

Thank You!